Order dimension of Turing degrees

Ashutosh Kumar National University of Singapore Joint work with Dilip Raghavan

Winter School, Hejnice 2019

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Definition

Suppose (\mathbb{P}, \leq) is a poset. The **order dimension** of \mathbb{P} is the least κ such that there exists $\langle \leq_i : i < \kappa \rangle$ where each \leq_i is a linear order on \mathbb{P} that extends \leq and for every $a \neq b$ in \mathbb{P} , if $a \notin b$, then for some $i < \kappa$, $b \leq_i a$.

Definition

Suppose (\mathbb{P}, \leq) is a poset. The **order dimension** of \mathbb{P} is the least κ such that there exists $\langle \leq_i : i < \kappa \rangle$ where each \leq_i is a linear order on \mathbb{P} that extends \leq and for every $a \neq b$ in \mathbb{P} , if $a \notin b$, then for some $i < \kappa$, $b \leq_i a$.

Question (Higuchi)

What is the order dimension of the Turing degrees $\mathcal{D} = (\mathcal{D}, \leq_{\mathcal{T}})$?

Definition

Suppose (\mathbb{P}, \leq) is a poset. The **order dimension** of \mathbb{P} is the least κ such that there exists $\langle \leq_i : i < \kappa \rangle$ where each \leq_i is a linear order on \mathbb{P} that extends \leq and for every $a \neq b$ in \mathbb{P} , if $a \notin b$, then for some $i < \kappa$, $b \leq_i a$.

Question (Higuchi)

What is the order dimension of the Turing degrees $\mathcal{D} = (\mathcal{D}, \leq_{\mathcal{T}})$?

Exercise

Show that it is between \aleph_1 and \mathfrak{c} .

Definition

Suppose (\mathbb{P}, \leq) is a poset. The **order dimension** of \mathbb{P} is the least κ such that there exists $\langle \leq_i : i < \kappa \rangle$ where each \leq_i is a linear order on \mathbb{P} that extends \leq and for every $a \neq b$ in \mathbb{P} , if $a \notin b$, then for some $i < \kappa$, $b \leq_i a$.

Question (Higuchi)

What is the order dimension of the Turing degrees $\mathcal{D} = (\mathcal{D}, \leq_{\mathcal{T}})$?

Exercise

Show that it is between \aleph_1 and \mathfrak{c} .

Higuchi-Lempp-Raghavan-Stephan showed that it is $\leq \kappa$ if $\mathfrak{c} = \kappa^+$ and κ has uncountable cofinality and asked if it could be equal to \mathfrak{c} when CH fails?

Definition

A poset (\mathbb{P}, \leq) is locally countable (resp. finite) if for every $x \in \mathbb{P}$, $\{y \in \mathbb{P} : y \leq x\}$ is countable (resp. finite).

Definition

A poset (\mathbb{P}, \leq) is locally countable (resp. finite) if for every $x \in \mathbb{P}$, $\{y \in \mathbb{P} : y \leq x\}$ is countable (resp. finite).

 ${\mathcal D}$ is a locally countable poset of size ${\mathfrak c}.$

Definition

A poset (\mathbb{P}, \leq) is locally countable (resp. finite) if for every $x \in \mathbb{P}$, $\{y \in \mathbb{P} : y \leq x\}$ is countable (resp. finite).

 \mathcal{D} is a locally countable poset of size \mathfrak{c} . Sacks showed that a locally countable poset \mathbb{P} of size $\leq \mathfrak{c}$ can be embedded into \mathcal{D} in either one of the following cases.

Definition

A poset (\mathbb{P}, \leq) is locally countable (resp. finite) if for every $x \in \mathbb{P}$, $\{y \in \mathbb{P} : y \leq x\}$ is countable (resp. finite).

 \mathcal{D} is a locally countable poset of size \mathfrak{c} . Sacks showed that a locally countable poset \mathbb{P} of size $\leq \mathfrak{c}$ can be embedded into \mathcal{D} in either one of the following cases.

 $\blacktriangleright \mathbb{P}$ is locally finite.

Definition

A poset (\mathbb{P}, \leq) is locally countable (resp. finite) if for every $x \in \mathbb{P}$, $\{y \in \mathbb{P} : y \leq x\}$ is countable (resp. finite).

 \mathcal{D} is a locally countable poset of size \mathfrak{c} . Sacks showed that a locally countable poset \mathbb{P} of size $\leq \mathfrak{c}$ can be embedded into \mathcal{D} in either one of the following cases.

- \mathbb{P} is locally finite.
- \mathbb{P} has size $\leq \aleph_1$.

Definition

A poset (\mathbb{P}, \leq) is locally countable (resp. finite) if for every $x \in \mathbb{P}$, $\{y \in \mathbb{P} : y \leq x\}$ is countable (resp. finite).

 \mathcal{D} is a locally countable poset of size \mathfrak{c} . Sacks showed that a locally countable poset \mathbb{P} of size $\leq \mathfrak{c}$ can be embedded into \mathcal{D} in either one of the following cases.

- \mathbb{P} is locally finite.
- \mathbb{P} has size $\leq \aleph_1$.
- Every member of \mathbb{P} has $\leq \aleph_1$ successors.

Definition

A poset (\mathbb{P}, \leq) is locally countable (resp. finite) if for every $x \in \mathbb{P}$, $\{y \in \mathbb{P} : y \leq x\}$ is countable (resp. finite).

 \mathcal{D} is a locally countable poset of size \mathfrak{c} . Sacks showed that a locally countable poset \mathbb{P} of size $\leq \mathfrak{c}$ can be embedded into \mathcal{D} in either one of the following cases.

- \mathbb{P} is locally finite.
- \mathbb{P} has size $\leq \aleph_1$.
- Every member of \mathbb{P} has $\leq \aleph_1$ successors.

Question (Sacks)

Must every locally countable poset of size continuum embed in \mathcal{D} ?

A poset inside ${\mathcal D}$

Definition

Let \mathbb{H}_{κ} be the poset consisting of $\kappa \sqcup [\kappa]^{\aleph_0}$ with the ordering a < B iff $a \in \kappa$, $B \in [\kappa]^{\aleph_0}$ and $a \in B$.

A poset inside $\ensuremath{\mathcal{D}}$

Definition

Let \mathbb{H}_{κ} be the poset consisting of $\kappa \sqcup [\kappa]^{\aleph_0}$ with the ordering a < B iff $a \in \kappa$, $B \in [\kappa]^{\aleph_0}$ and $a \in B$.

Theorem

 $\mathbb{H}_{\mathfrak{c}}$ embeds into the Turing degrees. So the order dimension of $\mathcal D$ is at least that of $\mathbb{H}_{\mathfrak{c}}.$

A poset inside $\ensuremath{\mathcal{D}}$

Definition

Let \mathbb{H}_{κ} be the poset consisting of $\kappa \sqcup [\kappa]^{\aleph_0}$ with the ordering a < B iff $a \in \kappa$, $B \in [\kappa]^{\aleph_0}$ and $a \in B$.

Theorem

 $\mathbb{H}_{\mathfrak{c}}$ embeds into the Turing degrees. So the order dimension of $\mathcal D$ is at least that of $\mathbb{H}_{\mathfrak{c}}.$

Proof: We'd like to start with a Turing independent perfect set of reals C (the join of any finite $F \subseteq C$ does not compute another real in $C \setminus F$) and try to add countable joins y_A for $A \in [C]^{\aleph_0}$. Note that y_A 's should be pairwise Turing incomparable and no y_A computes a member of $C \setminus A$.

$\mathbb{H}_{\mathfrak{c}}$ embeds in $\mathcal D$

We use the following perfect set version of the exact pair theorem of Spector.

Lemma (Spector)

Suppose $\langle a_n : n < \omega \rangle$ is \leq_T -increasing. Put $\mathcal{I} = \{z : (\exists n)(z \leq_T a_n)\}$. Then there is a perfect set $P \subseteq 2^{\omega}$ such that for any $x \neq y$ in P, x, y form an **exact pair** for \mathcal{I} , i.e., $\{z : z \leq_T x \land z \leq_T y\} = \mathcal{I}$.

$\mathbb{H}_{\mathfrak{c}}$ embeds in $\mathcal D$

We use the following perfect set version of the exact pair theorem of Spector.

Lemma (Spector)

Suppose $\langle a_n : n < \omega \rangle$ is \leq_T -increasing. Put $\mathcal{I} = \{z : (\exists n)(z \leq_T a_n)\}$. Then there is a perfect set $P \subseteq 2^{\omega}$ such that for any $x \neq y$ in P, x, y form an **exact pair** for \mathcal{I} , i.e., $\{z : z \leq_T x \land z \leq_T y\} = \mathcal{I}$.

Let $\{c_{\xi} : \xi < \mathfrak{c}\}$ be a Turing independent set of reals. For each $A \in [\mathfrak{c}]^{\aleph_0}$ fix a perfect set P_A of exact pairs for the Turing ideal generated by A. Inductively choose $X \in [\mathfrak{c}]^{\mathfrak{c}}$ and $y_A \in P_A$ for $A \in [X]^{\aleph_0}$ such that y_A 's are pairwise Turing incomparable and y_A computes c_{ξ} for $\xi \in X$ iff $\xi \in A$.

Definition

Suppose κ is uncountable and $\theta < \kappa$. $\star(\theta, \kappa)$ is the following statement: For every $\langle <_i : i < \theta \rangle$ where each $<_i$ is a linear order on κ , there exist X, α such that $X \in [\kappa]^{\aleph_0}$, $\alpha \in \kappa \setminus X$ and for every $i < \theta$, there exists $\beta \in X$ such that $\alpha \leq_i \beta$.

Definition

Suppose κ is uncountable and $\theta < \kappa$. $\star(\theta, \kappa)$ is the following statement: For every $\langle <_i : i < \theta \rangle$ where each $<_i$ is a linear order on κ , there exist X, α such that $X \in [\kappa]^{\aleph_0}$, $\alpha \in \kappa \setminus X$ and for every $i < \theta$, there exists $\beta \in X$ such that $\alpha \leq_i \beta$.

Lemma

 $\star(\theta,\kappa)$ implies that the order dimension of $\mathbb{H}_{\kappa} > \theta$.

Definition

Suppose κ is uncountable and $\theta < \kappa$. $\star(\theta, \kappa)$ is the following statement: For every $\langle <_i : i < \theta \rangle$ where each $<_i$ is a linear order on κ , there exist X, α such that $X \in [\kappa]^{\aleph_0}$, $\alpha \in \kappa \setminus X$ and for every $i < \theta$, there exists $\beta \in X$ such that $\alpha \leq_i \beta$.

Lemma

 $\star(\theta,\kappa)$ implies that the order dimension of $\mathbb{H}_{\kappa} > \theta$.

Proof: Suppose the order dimension of $\mathbb{H}_{\kappa} \leq \theta$. Let $\langle (\kappa \sqcup [\kappa]^{\aleph_0}, <_i) : i < \theta \rangle$ witness this. Suppose $A \in [\kappa]^{\aleph_0}$ and $\alpha \in \kappa \setminus A$. Since $\alpha \notin A$, for some $i < \theta$, $A <_i \alpha$. Hence for every $\beta \in A$, $\beta <_i A <_i \alpha$. It follows that $\langle <_i \upharpoonright \kappa : i < \theta \rangle$ witnesses the failure of $\star(\theta, \kappa)$.

Definition

Suppose κ is uncountable and $\theta < \kappa$. $\star(\theta, \kappa)$ is the following statement: For every $\langle <_i : i < \theta \rangle$ where each $<_i$ is a linear order on κ , there exist X, α such that $X \in [\kappa]^{\aleph_0}$, $\alpha \in \kappa \setminus X$ and for every $i < \theta$, there exists $\beta \in X$ such that $\alpha \leq_i \beta$.

Lemma

 $\star(\theta,\kappa)$ implies that the order dimension of $\mathbb{H}_{\kappa} > \theta$.

Proof: Suppose the order dimension of $\mathbb{H}_{\kappa} \leq \theta$. Let $\langle (\kappa \sqcup [\kappa]^{\aleph_0}, <_i) : i < \theta \rangle$ witness this. Suppose $A \in [\kappa]^{\aleph_0}$ and $\alpha \in \kappa \setminus A$. Since $\alpha \notin A$, for some $i < \theta$, $A <_i \alpha$. Hence for every $\beta \in A$, $\beta <_i A <_i \alpha$. It follows that $\langle <_i \upharpoonright \kappa : i < \theta \rangle$ witnesses the failure of $\star(\theta, \kappa)$.

Exercise

Prove the converse.

Definition

Suppose κ is regular uncountable and \mathcal{I} is a κ -additive ideal on κ that contains every bounded subset of κ . Call \mathcal{I} strongly saturated if for every family \mathcal{F} of \mathcal{I} -positive sets, if $|\mathcal{F}| < \kappa$, then there is a countable set that meets every member of \mathcal{F} .

Definition

Suppose κ is regular uncountable and \mathcal{I} is a κ -additive ideal on κ that contains every bounded subset of κ . Call \mathcal{I} strongly saturated if for every family \mathcal{F} of \mathcal{I} -positive sets, if $|\mathcal{F}| < \kappa$, then there is a countable set that meets every member of \mathcal{F} .

ション ふゆ アメリア メリア しょうくしゃ

Note that every strongly saturated ideal is also \aleph_1 -saturated (\aleph_1 -saturation means that there is no uncountable family of pairwise disjoint \mathcal{I} -positive sets).

Definition

Suppose κ is regular uncountable and \mathcal{I} is a κ -additive ideal on κ that contains every bounded subset of κ . Call \mathcal{I} strongly saturated if for every family \mathcal{F} of \mathcal{I} -positive sets, if $|\mathcal{F}| < \kappa$, then there is a countable set that meets every member of \mathcal{F} .

Note that every strongly saturated ideal is also \aleph_1 -saturated (\aleph_1 -saturation means that there is no uncountable family of pairwise disjoint \mathcal{I} -positive sets).

Question

Is every \aleph_1 -saturated ideal \mathcal{I} also strongly saturated?

Definition

Suppose κ is regular uncountable and \mathcal{I} is a κ -additive ideal on κ that contains every bounded subset of κ . Call \mathcal{I} strongly saturated if for every family \mathcal{F} of \mathcal{I} -positive sets, if $|\mathcal{F}| < \kappa$, then there is a countable set that meets every member of \mathcal{F} .

Note that every strongly saturated ideal is also \aleph_1 -saturated (\aleph_1 -saturation means that there is no uncountable family of pairwise disjoint \mathcal{I} -positive sets).

Question

Is every \aleph_1 -saturated ideal \mathcal{I} also strongly saturated?

If \mathcal{I} is the null ideal of a witnessing normal measure on a real valued measurable cardinal κ , this is Problem EG(h) on Fremlin's list.

Strongly saturated ideals and order dimension

Lemma

Let κ be regular uncountable and $\theta < \kappa$. Suppose there is a κ -additive ideal \mathcal{I} on κ (containing all bounded subset of κ) such that for every $\mathcal{A} \in [\mathcal{I}^+]^{\theta}$, there exists $X \in [\kappa]^{\aleph_0}$ such that for every $\mathcal{A} \in \mathcal{A}, X \cap \mathcal{A} \neq \emptyset$. Then $\star(\theta, \kappa)$ holds. Hence the order dimension of \mathbb{H}_{κ} is at least θ .

Strongly saturated ideals and order dimension

Lemma

Let κ be regular uncountable and $\theta < \kappa$. Suppose there is a κ -additive ideal \mathcal{I} on κ (containing all bounded subset of κ) such that for every $\mathcal{A} \in [\mathcal{I}^+]^{\theta}$, there exists $X \in [\kappa]^{\aleph_0}$ such that for every $\mathcal{A} \in \mathcal{A}, X \cap \mathcal{A} \neq \emptyset$. Then $\star(\theta, \kappa)$ holds. Hence the order dimension of \mathbb{H}_{κ} is at least θ .

Proof: Let $\{<_i: i < \theta\}$ be a family of linear orders on κ . For each $i < \theta$, let $R_i = \{\alpha < \kappa : \{\beta < \kappa : \beta \ge_i \alpha\} \in \mathcal{I}\}$. Let $\Gamma = \{i < \theta : R_i \in \mathcal{I}^+\}$. Choose $A_0 \in [\kappa]^{\aleph_0}$ such that $A_0 \cap R_i$ is infinite for each $i \in \Gamma$. Let $W = \kappa \setminus \bigcup_{i \in \Gamma} \{\beta < \kappa : (\exists \alpha \in A_0 \cap R_i)(\beta \ge_i \alpha)\}$. Note that $\kappa \setminus W \in \mathcal{I}$. Choose $\alpha \in W \setminus \bigcup_{i \in \theta \setminus \Gamma} R_i$. Choose $A_1 \in [\kappa]^{\aleph_0}$ such that it meets $\{\beta < \kappa : \beta \ge_i \alpha\}$ at an infinite set for every $i \in \kappa \setminus \Gamma$. Let $A = (A_0 \cup A_1) \setminus \{\alpha\}$. Then α is not \leq_i above A for any $i < \theta$.

Theorem

Suppose κ is measurable with a witnessing normal prime ideal \mathcal{I} . Let \mathbb{C} be the forcing for adding κ Cohen reals. Then in $V^{\mathbb{C}}$, $\mathcal{J} = \{A \subseteq \kappa : (\exists B \in \mathcal{I}) (A \subseteq B)\}$ is a strongly saturated ideal on κ . So the order dimension of $\mathbb{H}_{\mathfrak{c}}$ is \mathfrak{c} in this model.

Theorem

Suppose κ is measurable with a witnessing normal prime ideal \mathcal{I} . Let \mathbb{C} be the forcing for adding κ Cohen reals. Then in $V^{\mathbb{C}}$, $\mathcal{J} = \{A \subseteq \kappa : (\exists B \in \mathcal{I}) (A \subseteq B)\}$ is a strongly saturated ideal on κ . So the order dimension of $\mathbb{H}_{\mathfrak{c}}$ is \mathfrak{c} in this model.

Proof: It suffices to show the following.

Claim

Suppose $p \in \mathbb{C}$, $\theta < \kappa$ and $\mathring{A}_i \in V^{\mathbb{C}} \cap \mathcal{P}(\kappa)$ for $i < \theta$ are such that $p \Vdash \mathring{A}_i \in \mathcal{J}^+$ for every $i < \theta$. Then there are $q \leq p$ and $X \in [\kappa]^{\aleph_0}$ such that $q \Vdash (\forall i < \theta)(\mathring{A}_i \cap X \neq \emptyset)$.

Proof: Let *m* be a normal witnessing measure on κ and \mathcal{I} be its null ideal. WLOG, $p = 1_{\mathbb{C}}$. Let $p_{i,\alpha} = [[\alpha \in \mathring{A}_i]]_{\mathbb{C}}$. Note that for every $X \subseteq \kappa$, if m(X) = 1, then $\bigcup_{\alpha \in X} p_{i,\alpha} = 1_{\mathbb{C}}$. Choose $X \subseteq \kappa$ such that m(X) = 1 and for every $\alpha \in X$ and $i < \theta$, $p_{i,\alpha} \neq 0_{\mathbb{C}}$. Let $\operatorname{supp}(p_{i,\alpha}) = S_{i,\alpha} \in [\kappa]^{\aleph_0}$. Using normality of the null ideal of *m*, for each $i < \theta$, choose $Y_i \subseteq X$ such that $m(Y_i) = 1$ and for every $\alpha, \beta \in Y_i$

- $S_{i,\alpha}$ and $S_{i,\beta}$ have the same order type,
- $S_{i,\alpha} \cap \alpha = W_i$ does not depend on α and
- (2^{S_{i,α}}, p_{i,α}) ≃ (2^{S_{i,β}}, p_{i,β}) which means that the unique order preserving bijection from S_{i,α} to S_{i,β} sends p_{i,α} to p_{i,β}.

Let $Y = \bigcap_{i < \theta} Y_i$. Choose $X \in [Y]^{\aleph_0}$ such that for every $i < \theta$, $\{S_{i,\alpha} \setminus W_i : \alpha \in X\}$ are pairwise disjoint. It is not hard to check that for every $i < \theta$, $\bigcup_{\alpha \in X} p_{i,\alpha}$ is open dense in 2^{κ} . Hence $\Vdash (\forall i < \theta)(X \cap \mathring{A}_i \neq \emptyset)$.

Thank You!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの