Order dimension of Turing degrees

Ashutosh Kumar
National University of Singapore Joint work with Dilip Raghavan

Winter School, Hejnice 2019

Order dimension

Definition
Suppose (\mathbb{P}, \leq) is a poset. The order dimension of \mathbb{P} is the least κ such that there exists $\left\langle\leq_{i}: i<\kappa\right\rangle$ where each \leq_{i} is a linear order on \mathbb{P} that extends \leq and for every $a \neq b$ in \mathbb{P}, if $a \not \leq b$, then for some $i<\kappa, b \leq_{i} a$.

Order dimension

Definition
Suppose (\mathbb{P}, \leq) is a poset. The order dimension of \mathbb{P} is the least κ such that there exists $\left\langle\leq_{i}: i<\kappa\right\rangle$ where each \leq_{i} is a linear order on \mathbb{P} that extends \leq and for every $a \neq b$ in \mathbb{P}, if $a \not \leq b$, then for some $i<\kappa, b \leq_{i} a$.

Question (Higuchi)
What is the order dimension of the Turing degrees $\mathcal{D}=\left(\mathcal{D}, \leq_{T}\right)$?

Order dimension

Definition

Suppose (\mathbb{P}, \leq) is a poset. The order dimension of \mathbb{P} is the least κ such that there exists $\left\langle\leq_{i}: i<\kappa\right\rangle$ where each \leq_{i} is a linear order on \mathbb{P} that extends \leq and for every $a \neq b$ in \mathbb{P}, if $a \not \leq b$, then for some $i<\kappa, b \leq_{i} a$.

Question (Higuchi)

What is the order dimension of the Turing degrees $\mathcal{D}=\left(\mathcal{D}, \leq_{T}\right)$?

Exercise

Show that it is between \aleph_{1} and \mathfrak{c}.

Order dimension

Definition

Suppose (\mathbb{P}, \leq) is a poset. The order dimension of \mathbb{P} is the least κ such that there exists $\left\langle\leq_{i}: i<\kappa\right\rangle$ where each \leq_{i} is a linear order on \mathbb{P} that extends \leq and for every $a \neq b$ in \mathbb{P}, if $a \not \leq b$, then for some $i<\kappa, b \leq_{i} a$.

Question (Higuchi)

What is the order dimension of the Turing degrees $\mathcal{D}=\left(\mathcal{D}, \leq_{T}\right)$?

Exercise

Show that it is between \aleph_{1} and \mathfrak{c}.
Higuchi-Lempp-Raghavan-Stephan showed that it is $\leq \kappa$ if $\mathfrak{c}=\kappa^{+}$ and κ has uncountable cofinality and asked if it could be equal to \mathfrak{c} when CH fails?

What's inside \mathcal{D} ?

Definition

A poset (\mathbb{P}, \leq) is locally countable (resp. finite) if for every $x \in \mathbb{P}$, $\{y \in \mathbb{P}: y \leq x\}$ is countable (resp. finite).

What's inside \mathcal{D} ?

Definition

A poset (\mathbb{P}, \leq) is locally countable (resp. finite) if for every $x \in \mathbb{P}$, $\{y \in \mathbb{P}: y \leq x\}$ is countable (resp. finite).
\mathcal{D} is a locally countable poset of size \boldsymbol{c}.

What's inside \mathcal{D} ?

Definition
A poset (\mathbb{P}, \leq) is locally countable (resp. finite) if for every $x \in \mathbb{P}$, $\{y \in \mathbb{P}: y \leq x\}$ is countable (resp. finite).
\mathcal{D} is a locally countable poset of size \mathfrak{c}. Sacks showed that a locally countable poset \mathbb{P} of size $\leq \mathfrak{c}$ can be embedded into \mathcal{D} in either one of the following cases.

What's inside \mathcal{D} ?

Definition
A poset (\mathbb{P}, \leq) is locally countable (resp. finite) if for every $x \in \mathbb{P}$, $\{y \in \mathbb{P}: y \leq x\}$ is countable (resp. finite).
\mathcal{D} is a locally countable poset of size \mathfrak{c}. Sacks showed that a locally countable poset \mathbb{P} of size $\leq \mathfrak{c}$ can be embedded into \mathcal{D} in either one of the following cases.

- \mathbb{P} is locally finite.

What's inside \mathcal{D} ?

Definition
A poset (\mathbb{P}, \leq) is locally countable (resp. finite) if for every $x \in \mathbb{P}$, $\{y \in \mathbb{P}: y \leq x\}$ is countable (resp. finite).
\mathcal{D} is a locally countable poset of size \mathfrak{c}. Sacks showed that a locally countable poset \mathbb{P} of size $\leq \mathfrak{c}$ can be embedded into \mathcal{D} in either one of the following cases.

- \mathbb{P} is locally finite.
- \mathbb{P} has size $\leq \aleph_{1}$.

What's inside \mathcal{D} ?

Definition

A poset (\mathbb{P}, \leq) is locally countable (resp. finite) if for every $x \in \mathbb{P}$, $\{y \in \mathbb{P}: y \leq x\}$ is countable (resp. finite).
\mathcal{D} is a locally countable poset of size \mathfrak{c}. Sacks showed that a locally countable poset \mathbb{P} of size $\leq \mathfrak{c}$ can be embedded into \mathcal{D} in either one of the following cases.

- \mathbb{P} is locally finite.
- \mathbb{P} has size $\leq \aleph_{1}$.
- Every member of \mathbb{P} has $\leq \aleph_{1}$ successors.

What's inside \mathcal{D} ?

Definition

A poset (\mathbb{P}, \leq) is locally countable (resp. finite) if for every $x \in \mathbb{P}$, $\{y \in \mathbb{P}: y \leq x\}$ is countable (resp. finite).
\mathcal{D} is a locally countable poset of size \mathfrak{c}. Sacks showed that a locally countable poset \mathbb{P} of size $\leq \mathfrak{c}$ can be embedded into \mathcal{D} in either one of the following cases.

- \mathbb{P} is locally finite.
- \mathbb{P} has size $\leq \aleph_{1}$.
- Every member of \mathbb{P} has $\leq \aleph_{1}$ successors.

Question (Sacks)

Must every locally countable poset of size continuum embed in \mathcal{D} ?

A poset inside \mathcal{D}

Definition

Let \mathbb{H}_{κ} be the poset consisting of $\kappa \sqcup[\kappa]^{\aleph_{0}}$ with the ordering $a<B$ iff $a \in \kappa, B \in[\kappa]^{\aleph_{0}}$ and $a \in B$.

A poset inside \mathcal{D}

Definition

Let \mathbb{H}_{κ} be the poset consisting of $\kappa \sqcup[\kappa]^{\aleph_{0}}$ with the ordering $a<B$ iff $a \in \kappa, B \in[\kappa]^{\aleph_{0}}$ and $a \in B$.

Theorem
$\mathbb{H}_{\mathfrak{c}}$ embeds into the Turing degrees. So the order dimension of \mathcal{D} is at least that of $\mathbb{H}_{\mathfrak{c}}$.

A poset inside \mathcal{D}

Definition

Let \mathbb{H}_{κ} be the poset consisting of $\kappa \sqcup[\kappa]^{N_{0}}$ with the ordering $a<B$ iff $a \in \kappa, B \in[\kappa]^{\aleph_{0}}$ and $a \in B$.

Theorem
$\mathbb{H}_{\mathfrak{c}}$ embeds into the Turing degrees. So the order dimension of \mathcal{D} is at least that of $\mathbb{H}_{\mathfrak{c}}$.
Proof: We'd like to start with a Turing independent perfect set of reals C (the join of any finite $F \subseteq C$ does not compute another real in $C \backslash F$) and try to add countable joins y_{A} for $A \in[C]^{\aleph_{0}}$. Note that y_{A} 's should be pairwise Turing incomparable and no y_{A} computes a member of $C \backslash A$.

$\mathbb{H}_{\mathfrak{c}}$ embeds in \mathcal{D}

We use the following perfect set version of the exact pair theorem of Spector.
Lemma (Spector)
Suppose $\left\langle a_{n}: n<\omega\right\rangle$ is \leq_{T}-increasing. Put $\mathcal{I}=\left\{z:(\exists n)\left(z \leq_{T} a_{n}\right)\right\}$. Then there is a perfect set $P \subseteq 2^{\omega}$ such that for any $x \neq y$ in P, x, y form an exact pair for \mathcal{I}, i.e., $\left\{z: z \leq_{T} x \wedge z \leq_{T} y\right\}=\mathcal{I}$.

$\mathbb{H}_{\mathfrak{c}}$ embeds in \mathcal{D}

We use the following perfect set version of the exact pair theorem of Spector.
Lemma (Spector)
Suppose $\left\langle a_{n}: n<\omega\right\rangle$ is \leq_{T}-increasing. Put
$\mathcal{I}=\left\{z:(\exists n)\left(z \leq_{T} a_{n}\right)\right\}$. Then there is a perfect set $P \subseteq 2^{\omega}$ such that for any $x \neq y$ in P, x, y form an exact pair for \mathcal{I}, i.e., $\left\{z: z \leq_{T} \times \wedge z \leq_{T} y\right\}=\mathcal{I}$.
Let $\left\{c_{\xi}: \xi<\mathfrak{c}\right\}$ be a Turing independent set of reals. For each $A \in[c]^{\aleph_{0}}$ fix a perfect set P_{A} of exact pairs for the Turing ideal generated by A. Inductively choose $X \in[c]^{c}$ and $y_{A} \in P_{A}$ for $A \in[X]^{\aleph_{0}}$ such that y_{A} 's are pairwise Turing incomparable and y_{A} computes c_{ξ} for $\xi \in X$ iff $\xi \in A$.

The order dimension of \mathbb{H}_{κ}

Definition

Suppose κ is uncountable and $\theta<\kappa . \star(\theta, \kappa)$ is the following statement: For every $\left\langle<_{i}: i<\theta\right\rangle$ where each $<_{i}$ is a linear order on κ, there exist X, α such that $X \in[\kappa]^{\aleph_{0}}, \alpha \in \kappa \backslash X$ and for every $i<\theta$, there exists $\beta \in X$ such that $\alpha \leq_{i} \beta$.

The order dimension of \mathbb{H}_{κ}

Definition

Suppose κ is uncountable and $\theta<\kappa . \star(\theta, \kappa)$ is the following statement: For every $\left\langle<_{i}: i<\theta\right\rangle$ where each $<_{i}$ is a linear order on κ, there exist X, α such that $X \in[\kappa]^{\aleph_{0}}, \alpha \in \kappa \backslash X$ and for every $i<\theta$, there exists $\beta \in X$ such that $\alpha \leq_{i} \beta$.

Lemma

$\star(\theta, \kappa)$ implies that the order dimension of $\mathbb{H}_{\kappa}>\theta$.

The order dimension of \mathbb{H}_{κ}

Definition

Suppose κ is uncountable and $\theta<\kappa . \star(\theta, \kappa)$ is the following statement: For every $\left\langle<_{i}: i<\theta\right\rangle$ where each $<_{i}$ is a linear order on κ, there exist X, α such that $X \in[\kappa]^{\aleph_{0}}, \alpha \in \kappa \backslash X$ and for every $i<\theta$, there exists $\beta \in X$ such that $\alpha \leq_{i} \beta$.

Lemma

$\star(\theta, \kappa)$ implies that the order dimension of $\mathbb{H}_{\kappa}>\theta$.
Proof: Suppose the order dimension of $\mathbb{H}_{\kappa} \leq \theta$. Let $\left\langle\left(\kappa \sqcup[\kappa]^{\aleph_{0}},<_{i}\right): i<\theta\right\rangle$ witness this. Suppose $A \in[\kappa]^{\aleph_{0}}$ and $\alpha \in \kappa \backslash A$. Since $\alpha \notin A$, for some $i<\theta, A<_{i} \alpha$. Hence for every $\beta \in A, \beta<_{i} A<_{i} \alpha$. It follows that $\left\langle<_{i} \upharpoonright \kappa: i<\theta\right\rangle$ witnesses the failure of $\star(\theta, \kappa)$.

The order dimension of \mathbb{H}_{κ}

Definition

Suppose κ is uncountable and $\theta<\kappa . \star(\theta, \kappa)$ is the following statement: For every $\left\langle<_{i}: i<\theta\right\rangle$ where each $<_{i}$ is a linear order on κ, there exist X, α such that $X \in[\kappa]^{\aleph_{0}}, \alpha \in \kappa \backslash X$ and for every $i<\theta$, there exists $\beta \in X$ such that $\alpha \leq_{i} \beta$.

Lemma

$\star(\theta, \kappa)$ implies that the order dimension of $\mathbb{H}_{\kappa}>\theta$.
Proof: Suppose the order dimension of $\mathbb{H}_{\kappa} \leq \theta$. Let $\left\langle\left(\kappa \sqcup[\kappa]^{\aleph_{0}},<_{i}\right): i<\theta\right\rangle$ witness this. Suppose $A \in[\kappa]^{\aleph_{0}}$ and $\alpha \in \kappa \backslash A$. Since $\alpha \notin A$, for some $i<\theta, A<_{i} \alpha$. Hence for every $\beta \in A, \beta<_{i} A<_{i} \alpha$. It follows that $\left\langle<_{i} \upharpoonright \kappa: i<\theta\right\rangle$ witnesses the failure of $\star(\theta, \kappa)$.

Exercise

Prove the converse.

Strongly saturated ideals

Definition

Suppose κ is regular uncountable and \mathcal{I} is a κ-additive ideal on κ that contains every bounded subset of κ. Call \mathcal{I} strongly saturated if for every family \mathcal{F} of \mathcal{I}-positive sets, if $|\mathcal{F}|<\kappa$, then there is a countable set that meets every member of \mathcal{F}.

Strongly saturated ideals

Definition

Suppose κ is regular uncountable and \mathcal{I} is a κ-additive ideal on κ that contains every bounded subset of κ. Call \mathcal{I} strongly saturated if for every family \mathcal{F} of \mathcal{I}-positive sets, if $|\mathcal{F}|<\kappa$, then there is a countable set that meets every member of \mathcal{F}.
Note that every strongly saturated ideal is also \aleph_{1}-saturated (\aleph_{1}-saturation means that there is no uncountable family of pairwise disjoint \mathcal{I}-positive sets).

Strongly saturated ideals

Definition

Suppose κ is regular uncountable and \mathcal{I} is a κ-additive ideal on κ that contains every bounded subset of κ. Call \mathcal{I} strongly
saturated if for every family \mathcal{F} of \mathcal{I}-positive sets, if $|\mathcal{F}|<\kappa$, then there is a countable set that meets every member of \mathcal{F}.
Note that every strongly saturated ideal is also \aleph_{1}-saturated (\aleph_{1}-saturation means that there is no uncountable family of pairwise disjoint \mathcal{I}-positive sets).
Question
Is every \aleph_{1}-saturated ideal \mathcal{I} also strongly saturated?

Strongly saturated ideals

Definition

Suppose κ is regular uncountable and \mathcal{I} is a κ-additive ideal on κ that contains every bounded subset of κ. Call \mathcal{I} strongly
saturated if for every family \mathcal{F} of \mathcal{I}-positive sets, if $|\mathcal{F}|<\kappa$, then there is a countable set that meets every member of \mathcal{F}.
Note that every strongly saturated ideal is also \aleph_{1}-saturated (\aleph_{1}-saturation means that there is no uncountable family of pairwise disjoint \mathcal{I}-positive sets).

Question

Is every \aleph_{1}-saturated ideal \mathcal{I} also strongly saturated?
If \mathcal{I} is the null ideal of a witnessing normal measure on a real valued measurable cardinal κ, this is Problem EG(h) on Fremlin's list.

Strongly saturated ideals and order dimension

Lemma

Let κ be regular uncountable and $\theta<\kappa$. Suppose there is a κ-additive ideal \mathcal{I} on κ (containing all bounded subset of κ) such that for every $\mathcal{A} \in\left[\mathcal{I}^{+}\right]^{\theta}$, there exists $X \in[\kappa]^{\aleph_{0}}$ such that for every $A \in \mathcal{A}, X \cap A \neq \emptyset$. Then $\star(\theta, \kappa)$ holds. Hence the order dimension of \mathbb{H}_{κ} is at least θ.

Strongly saturated ideals and order dimension

Lemma

Let κ be regular uncountable and $\theta<\kappa$. Suppose there is a κ-additive ideal \mathcal{I} on κ (containing all bounded subset of κ) such that for every $\mathcal{A} \in\left[\mathcal{I}^{+}\right]^{\theta}$, there exists $X \in[\kappa]^{\aleph_{0}}$ such that for every $A \in \mathcal{A}, X \cap A \neq \emptyset$. Then $\star(\theta, \kappa)$ holds. Hence the order dimension of \mathbb{H}_{κ} is at least θ.
Proof: Let $\left\{<_{i}: i<\theta\right\}$ be a family of linear orders on κ. For each $i<\theta$, let $R_{i}=\left\{\alpha<\kappa:\left\{\beta<\kappa: \beta \geq_{i} \alpha\right\} \in \mathcal{I}\right\}$. Let $\Gamma=\left\{i<\theta: R_{i} \in \mathcal{I}^{+}\right\}$. Choose $A_{0} \in[\kappa]^{\aleph_{0}}$ such that $A_{0} \cap R_{i}$ is infinite for each $i \in \Gamma$. Let $W=\kappa \backslash \bigcup_{i \in \Gamma}\left\{\beta<\kappa:\left(\exists \alpha \in A_{0} \cap R_{i}\right)\left(\beta \geq_{i} \alpha\right)\right\}$. Note that $\kappa \backslash W \in \mathcal{I}$. Choose $\alpha \in W \backslash \bigcup_{i \in \theta \backslash\lceil } R_{i}$. Choose $A_{1} \in[\kappa]^{\Lambda_{0}}$ such that it meets $\left\{\beta<\kappa: \beta \geq_{i} \alpha\right\}$ at an infinite set for every $i \in \kappa \backslash \Gamma$. Let $A=\left(A_{0} \cup A_{1}\right) \backslash\{\alpha\}$. Then α is not \leq_{i} above A for any $i<\theta$.

The model

Theorem

Suppose κ is measurable with a witnessing normal prime ideal \mathcal{I}. Let \mathbb{C} be the forcing for adding κ Cohen reals. Then in $V^{\mathbb{C}}$, $\mathcal{J}=\{A \subseteq \kappa:(\exists B \in \mathcal{I})(A \subseteq B)\}$ is a strongly saturated ideal on κ. So the order dimension of $\mathbb{H}_{\mathfrak{c}}$ is \mathfrak{c} in this model.

The model

Theorem

Suppose κ is measurable with a witnessing normal prime ideal \mathcal{I}. Let \mathbb{C} be the forcing for adding κ Cohen reals. Then in $V^{\mathbb{C}}$, $\mathcal{J}=\{A \subseteq \kappa:(\exists B \in \mathcal{I})(A \subseteq B)\}$ is a strongly saturated ideal on κ. So the order dimension of $\mathbb{H}_{\mathfrak{c}}$ is \mathfrak{c} in this model.
Proof: It suffices to show the following.
Claim
Suppose $p \in \mathbb{C}, \theta<\kappa$ and $\AA_{i} \in V^{\mathbb{C}} \cap \mathcal{P}(\kappa)$ for $i<\theta$ are such that $p \Vdash \AA_{i} \in \mathcal{J}^{+}$for every $i<\theta$. Then there are $q \leq p$ and $X \in[\kappa]^{N_{0}}$ such that $q \Vdash(\forall i<\theta)\left(\AA_{i} \cap X \neq \emptyset\right)$.

The model

Proof: Let m be a normal witnessing measure on κ and \mathcal{I} be its null ideal. WLOG, $p=1_{\mathbb{C}}$. Let $p_{i, \alpha}=\left[\left[\alpha \in \AA_{i}\right]\right]_{\mathbb{C}}$. Note that for every $X \subseteq \kappa$, if $m(X)=1$, then $\bigcup_{\alpha \in X} p_{i, \alpha}=1_{\mathbb{C}}$. Choose $X \subseteq \kappa$ such that $m(X)=1$ and for every $\alpha \in X$ and $i<\theta, p_{i, \alpha} \neq 0_{\mathbb{C}}$. Let $\operatorname{supp}\left(p_{i, \alpha}\right)=S_{i, \alpha} \in[\kappa]^{\aleph_{0}}$. Using normality of the null ideal of m, for each $i<\theta$, choose $Y_{i} \subseteq X$ such that $m\left(Y_{i}\right)=1$ and for every $\alpha, \beta \in Y_{i}$

- $S_{i, \alpha}$ and $S_{i, \beta}$ have the same order type,
- $S_{i, \alpha} \cap \alpha=W_{i}$ does not depend on α and
- $\left(2^{S_{i, \alpha}}, p_{i, \alpha}\right) \cong\left(2^{S_{i, \beta}}, p_{i, \beta}\right)$ which means that the unique order preserving bijection from $S_{i, \alpha}$ to $S_{i, \beta}$ sends $p_{i, \alpha}$ to $p_{i, \beta}$.

The model

Let $Y=\bigcap_{i<\theta} Y_{i}$. Choose $X \in[Y]^{\aleph_{0}}$ such that for every $i<\theta$, $\left\{S_{i, \alpha} \backslash W_{i}: \alpha \in X\right\}$ are pairwise disjoint. It is not hard to check that for every $i<\theta, \bigcup_{\alpha \in X} p_{i, \alpha}$ is open dense in 2^{κ}. Hence $\Vdash(\forall i<\theta)\left(X \cap \AA_{i} \neq \emptyset\right)$.

Thank You!

